Abstract

Abstract The mechanical behavior, physical behavior, microstructural characteristics, and corrosion behavior of AA2014/silicon carbide (SiC)/carbonized eggshell hybrid green metal matrix composites (MMCs) were investigated. Twenty-five samples of hybrid composite with different combinations of SiC and carbonized eggshell particles in AA2014 matrix alloy were prepared. Microstructure presents that the reinforcement particles (SiC and eggshells) are uniformly distributed in the matrix AA2014 alloy. Transmission electron microscope image shows proper wettability between SiC, carbonized eggshell, and AA2014 aluminum alloy. The tensile strength and the fatigue strength for the composites containing 2.5 wt.% SiC up to 7.5 wt.% carbonized eggshell were observed to be higher than that of the other selected composites. The hardness values for the composites containing 12.5 wt.% SiC and 2.5 wt.% carbonized eggshell were in all cases higher than that of the other composites. The results show that toughness decreases with the increase in the weight ratio of SiC and carbonized eggshell in the composites. The results reveal that the sample of AA2014/2.5% SiC/12.5% carbonized eggshell shows minimum corrosion rate among all the selected samples. Density, porosity, and overall cost of hybrid metal matrix composites were also calculated to see the effects of carbonized eggshell and SiC addition in AA2014 matrix alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call