Abstract

Soil nitrogen cycling in forests may be accelerated or inhibited by global warming, with consequences on forest productivity. Such an impact will be more complicated with extending period of warming. We examined the effects of warming on soil inorganic nitrogen content in the young and mature Cunninghamia lanceolata plantations. Warming was simulated by means of soil cable warming, simulating a future climate change scenario of 4 ℃ warming. The results showed that after three years warming, both total soil inorganic nitrogen and ammonium contents in the young and mature plantations were significantly reduced. The sharp decline occurred in the young plantation, with soil ammonium content in 0-10, 10-20, 20-40, 40-60 cm soil layers decreased by 32.1%, 37.1%, 20.8% and 19.9%, respectively. Dissolved organic nitrogen was reduced and N2O emission was accelerated in the both plantations. The main reasons for the reduction of soil inorganic nitrogen concentration were lower input of organic nitrogen substrate and higher gaseous nitrogen loss. The decrease in soil organic nitrogen substrate and increase in gaseous nitrogen emissions in the young plantation were larger than those in the mature plantation, indicating that soils in the young plantation were more sensitive to increasing temperature. The 3-year warming decreased soil inorganic nitrogen contents in the two C. lanceolata plantations, which might negatively affect productivity of the C. lanceolata plantations in subtropic China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call