Abstract

Large 2219 Al–Cu alloy transition rings are extensively utilised in launch vehicles. However, coarse-grained structures and agglomerated Al2Cu second-phase particles considerably decrease the ductility of large 2219 Al–Cu alloy rings manufactured using the conventional hot rolling process. In this study, 10%–40% warm rolling deformation was applied to elucidate the evolution of grain structures, characteristics of the Al2Cu second-phase particles, and the influencing mechanisms of ductility. The results indicate that increased warm rolling deformation can facilitate dynamic recrystallisation and yield more sub-grains, which leads to the appearance of numerous finer and more equiaxed recrystallised grains after solution heat treatment; however, the homogeneity of the grain structure is decreased. With increased warm rolling deformation, Al2Cu second-phase particles are more dispersed and more completely fragmented; furthermore, the dispersed and fragmented Al2Cu particles are more thoroughly dissolved during solution heat treatment. By the combined action of grain structures and second-phase particles, the main fracture mode transitions from intergranular fracture into transcrystalline fracture. This results in elongation in the axial and circumferential directions increasing steadily with increased warm rolling deformation; elongation in the radial direction initially increases, and finally decreases due to the appearance of glide planes. Samples that experience a warm rolling deformation of 30% exhibit the best overall elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.