Abstract

We investigate the rheological properties of a filler-reinforced rubber compound using a rotorless shear rheometer specially designed for rubber and a rotational rheometer with parallel-plate geometry. Our aim is to evaluate the effects of wall slip on both the oscillatory and steady shear modes of the rotational rheometer. The rheological measurements show that the slip generally does not affect the oscillatory shear but does exist in the steady shear flow and tends to make the measured shear viscosity lower than the true value. Besides, we extend the investigation into engineering applications. The extrusion die for a given extrudate profile is obtained using a finite-element model in which the wall slip is considered as a boundary condition. To validate the die design, an extrusion experiment is carried out and the results confirm that, for filled elastomers, it is necessary to consider the effect of wall slip in the extrusion die design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.