Abstract

PurposeThis paper aims to identify the role of the wall slip on the dynamic characteristics of the multi-groove water-lubricated bearing considering rough contact, including stiffness and damping coefficients of the water film and contact stiffness coefficient of the asperity contact.Design/methodology/approachThe modified perturbed average Reynolds equations with the wall slip are derived, and the calculated perturbed hydrodynamic pressures are integrated to obtain the stiffness and damping coefficients of the water film. The elastic-plastic contact model of Kogut and Etsion is used to determine the contact stiffness coefficient.FindingsNumerical results reveal that the wall slip has the more significant impact on the water film stiffness coefficients compared with the damping and contact stiffness coefficients. When the slip angle lies in a reasonable range, the lubrication performance can be effectively improved, especially in the mixed lubrication condition. In addition, it is worth emphasizing that the abrupt change of the water film stiffness coefficients occurs at the region II (pressure zone) in this study.Originality/valueThe influence mechanism of the wall slip on the dynamic characteristics of the water-lubricated bearing considering rough contact is first revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call