Abstract

Decapod crustaceans with normal heart function respond to the increased oxygen delivery requirements during walking with a step increase in heart and ventilation rate. In American lobsters, ventilation rate increased by the same amount during exercise at two walking speeds (2.4 and 8 m min(-1)); however, ventilation volume was significantly greater at the fastest walking speed (280 mL min(-1)) compared to animals at rest or walking at the slower speed (180 mL min(-1)). The heart responded in a similar manner to locomotion. Heart rate was elevated to the same level at the two different walking speeds, but cardiac stroke volume was greater, implying increased cardiac output, at the faster walking speed. The communication and compensation between the cardiac and ventilatory systems was revealed when the function of one was impaired. Ventilatory rate was significantly elevated when cardiac output was impaired by sectioning two of the alary ligaments and/or the regulatory nerves to the heart. When cardiac output was more severely impaired, ventilation rate was greater. Despite ventilatory compensation, anaerobic metabolism made a greater contribution to energy production with impaired heart function. Hemolymph lactate concentration was three to five times greater in impaired animals than controls. It is known that the ventilatory and cardiac systems of lobsters are coregulated. These data demonstrate that the performance of one system can respond to compensate for impaired function in the other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.