Abstract
a r t i c l e i n f o a b s t r a c t Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS2) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena. © 2014 Elsevier B.V. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.