Abstract

The Ts65Dn (TS) mouse is the most widely used model of Down syndrome (DS). This mouse shares many phenotypic characteristics with the human condition including cognitive and neuromorphological alterations. In this study the effects of physical exercise on hippocampal neurogenesis and behavior in TS mice were assessed. 10–12 month-old male TS and control (CO) mice were submitted to voluntary physical exercise for 7 weeks and the effects of this protocol on hippocampal morphology, neurogenesis and apoptosis were evaluated. Physical exercise improved performance in the acquisition sessions of the Morris water maze in TS but not in CO mice. Conversely, it did not have any effect on anxiety or depressive behavior in TS mice but it did reduce the cognitive components of anxiety in CO mice. TS mice presented a reduced dentate gyrus (DG) volume, subgranular zone area and number of granule neurons. Hippocampal neurogenesis was reduced in TS mice as shown by the reduced number of 5-bromo-2-deoxyuridine (BrdU) positive cells. Voluntary physical exercise did not rescue these alterations in TS mice but it did increase the number of doublecortin (DCX)-and phospho histone 3 (PH3)-positive neurons in CO mice. It is concluded that physical exercise produced a modest anxiolytic effect in CO mice and that this was accompanied by an increased number of immature cells in the hippocampal DG. On the other hand, voluntary physical exercise exerted a positive effect on TS mice learning of the platform position in the Morris water maze that seems to be mediated by a neurogenesis-independent mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.