Abstract

Coupled lattice Boltzmann and discrete element methods were employed to investigate the rheological properties of oblate spheroid suspensions in a Newtonian fluid. The volume fraction of the particles is varied along with the particle aspect ratio. As the particle shape is varied from sphere to oblate, we observe an increase in the relative viscosity as well as an increase in the particle contacts and the contact distance. The more oblate particles in denser suspensions are observed to reorient systematically subject to the shear flow. We recast the viscosity data using the Krieger–Dougherty formula and report the modified Einstein coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call