Abstract

Metallic hollow spheres and polyurethane resin are excellent sound insulation and sound absorption materials. In this study, the surface modified 316L stainless steel hollow spheres were added into polyurethane by casting method. The influence of the volume fraction and diameter of the hollow spheres on the sound insulation and sound absorption performance of the Metallic-Hollow-Sphere/Polyurethane (MHSP) acoustic composites was investigated by impedance tube method and the relevant acoustic mechanism was discussed. When the volume fraction of hollow spheres is 45% and the diameter is 2.5 mm, composite has the best sound insulation performance. And when the volume fraction of hollow spheres is 60% and the diameter is 2.5 mm, composite has the best sound absorption performance. Due to the mass effect, damping effect, change of acoustic impedance and multiple interface of composites, sound waves will reflect, refract and scatter many times in the process of propagation, thus losing lots of sound energy to improve the sound insulation performance. The sound absorption mechanism of MHSP is that the friction, viscosity and reflection of sound waves in the pores of polyurethane, cavities of the hollow spheres and interfaces will cause the loss of sound energy and turn it into heat energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.