Abstract
We use laboratory experiments and numerical models to examine the effects of volcano loading on the propagation of buoyant dikes in a two‐dimensional elastic half‐space. In laboratory experiments we simulate the propagation of buoyant dikes in an isotropic regional stress field by injecting air into tanks of solidified gelatin. A weight resting on the surface of the gelatin represents a volcanic load. A numerical model is used to simulate these experiments. Both experiments and numerical simulations show that as a dike ascends, it begins to curve toward the load in response to the local stress field imposed by the load. The lateral distance over which dikes curve to the load increases with the ratio of average pressure at the base of the load to the dike driving pressure. For realistic volcano and dike dimensions this pressure ratio is going to be large, suggesting that dikes can converge to a volcano over lateral distances several times the load width. Numerical calculations involving an anisotropic regional stress field, however, predict that the lateral extent of dike attraction shrinks as the regional horizontal compressive stress decreases relative to the vertical compressive stress. Dike focusing will be substantial if the regional differential stresses are less than the average pressure at the base of the load. If this is the case, then our models predict a positive feedback between the size of volcanoes and the area of dike attraction. This feedback may promote the development of large discrete volcanoes and also predicts a positive correlation between the spacing and sizes of adjacent volcanoes. To test this prediction, we examine nearest‐neighbor pairs of the 21 largest volcanoes in the Cascade Range. The 14 pairs examined show a large range in volcano spacing (6–115 km) and a statistically significant correlation between spacing and average volcano height. This result is consistent with our model results and suggests that the local compressive stress induced by these volcanoes may be an important factor in controlling magma transport in the lithosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.