Abstract

Dielectric potting materials (encapsulants) are used to prevent air breakdown in high-voltage electrical devices. We report breakdown strengths in void-filled encapsulants, stressed with unipolar voltage pulses of the order of 10 μs duration. High strengths, on the order of 100 kV mm−1, are measured under these test conditions. The materials studied include low-density open celled gel-derived foams with cell sizes of 4 μm or less, closed celled CO2-blown polystyrene and urethane foams, and epoxies containing 48 vol % of hollow glass microballoon (GMB) fillers. These last specimens varied the void gas (N2 or SO2) and also the void diameters (tens to hundreds of μm). Our measurements are thought to be directly sensitive to the rate of field-induced ionization events in the void gas; however, the breakdown strengths of the materials tested appeared to vary in direct proportion with the conventional Paschen-law gas-discharge inception threshold, the electric stress at which gas-ionization avalanches become possible. The GMB-epoxy specimens displayed this type of dependence of breakdown strength on the void-gas density and void size, but the measurements were an order of magnitude above the conventional predictions. Small-celled foams also showed increased breakdown strengths with decreased cell size, although their irregular void geometry prevented a direct comparison with the more uniformly structured microballoon-filled encapsulants. The experimental observations are consistent with a breakdown mechanism in which the discharge of a few voids can launch a full breakdown in the composite material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.