Abstract
ObjectiveDysphonia is very common worldwide and aerosol drug inhalation is an important treatment for patients with dysphonia. This study aimed to explore the effects of vocal fold (VF) lesions on the particle deposition pattern using computational modeling. MethodsA realistic mouth-throat (MT) model of a healthy adult was constructed based on computed tomography images. Small and large vocal fold lesions were incorporated in the original model. A steady inhalation flowrate of 15 and 30 liter per minute (LPM) was used as the velocity inlet and monodisperse particles with diameters of 5 to 10 µm were simulated. ResultsParticles of larger size are more likely to be deposited in MT models, most of them distributed in oral cavity, oropharynx and supraglottis. The ideal sizes at 30 LPM ranged over 7-10 µm for healthy VFs and 6-8 µm for VF lesions. The best sizes at 15 LPM ranged over 6-8 µm for healthy VFs and 8-9 µm for VF lesions. ConclusionBased on this study, VF lesions influence the deposition pattern in the glottis obviously. The ideal sizes differ at the flow rates of 15 and 30 LPM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.