Abstract

Asthma and many autoimmune diseases, such as systemic lupus erythematosus, have been reported to associate with vitamin D deficiency recently. Growth-related oncogene-α (GRO-α)/CXCL1, a neutrophil-related chemokine, have an important influence on the chronic inflammation of these diseases. It is unknown whether vitamin D has regulatory effects on GRO-α expression in human monocytes. To this end, the human monocytic leukemia cell line, THP-1, and human primary monocytes were pretreated with 1α, 25-(OH)(2)D(3), and was stimulated with lipopolysaccharide (LPS). Supernatants were collected to determine GRO-α level by ELISA. The intracellular signaling was investigated by nuclear factor (NF)-κB inhibitor, the mitogen-activated protein kinase (MAPK) inhibitors, and Western blot. In our studies, LPS-induced GRO-α was significantly enhanced in THP-1 cells, but suppressed in human primary monocytes by 1α, 25-(OH)(2)D(3). Western blotting revealed that 1α, 25-(OH)(2)D(3) increased LPS-stimulated pp38 expression in THP-1 cells, but suppressed LPS-stimulated pMEK1/2-pERK and pJNK in human primary monocytes. In conclusion, the opposite effects of 1α, 25-(OH)(2)D(3) on GRO-α expression in THP-1 cells and human primary monocytes indicated that the data from THP-1 cells should be further confirmed by human primary monocytes. Moreover, vitamin D3 may have potentiality in treating GRO-α-related chronic inflammatory diseases, like asthma and autoimmune diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.