Abstract
Vitamin A is a fat-soluble compound widely known for vision health. Highly variable reports on its effects on bone health have necessitated further research to truly understand its role on bone cell proliferation. Retinol, one bioactive form of vitamin A, is incorporated into synthetic bone graft scaffolds for low load-bearing clinical bone treatment. The objective of this work is to understand the effects of retinol on osteoblast and osteoclast cells when embedded within calcium phosphate matrices, including interconnected porous 3D printed tricalcium phosphate scaffolds. Results show that hydrophobic retinol can be released from bone scaffolds when a combination of biodegradable polymers, polycaprolactone and polyethylene glycol, are employed as drug carriers. The release of retinol in vitro can support a 20 ± 1% increase in osteoblast (bone-forming) cell proliferation with proper cell adhesion and filopodial extensions. Osteoclast cell morphology is necrosed and torn with a reduction in proliferation at approximately 6 ± 1% when retinol is present. In addition, inhibition of osteoclastic resorption pit bays is noted using scanning electron microscopy. With the scaffolds' round pore interconnectivity facilitating retinol release, this system can provide an alternative to traditional bone grafts while additionally supporting bone healing through enhanced osteoblast cell proliferation and inhibition of osteoclast resorption activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.