Abstract

There are critical periods in development when sensory experience directs the maturation of synapses and circuits within neocortex. We report that the critical period in mouse visual cortex has a specific molecular logic of gene regulation. Four days of visual deprivation regulated one set of genes during the critical period, and different sets before or after. Dark rearing perturbed the regulation of these age-specific gene sets. In addition, a 'common gene set', comprised of target genes belonging to a mitogen-activated protein (MAP) kinase signaling pathway, was regulated by vision at all ages but was impervious to prior history of sensory experience. Together, our results demonstrate that vision has dual effects on gene regulation in visual cortex and that sensory experience is needed for the sequential acquisition of age-specific, but not common, gene sets. Thus, a dynamic interplay between experience and gene expression drives activity-dependent circuit maturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.