Abstract

This is a study of the effects of viscosity (in the range of 0.8-790 cP), of temperature (in the range of 260.7-307.7 K), and of ionic strength (in the range of 2.5-20.0 mM) on the kinetics of photoinduced electron-transfer reaction 3Zncyt/pc(II) --> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and cupriplastocyanin at pH 7.0. The unimolecular rate constant is kF. The apparent activation parameters DeltaH*, DeltaS*, and DeltaG* for this reaction were obtained in experiments with aqueous glycerol solutions having a constant composition. The interpolation of kF values obtained at the constant composition into the dependence of kF on temperature at constant viscosity gave the proper activation parameters, which agree with those obtained in experiments with solutions having a constant viscosity. This agreement validates the latter method, which is more efficient than the former, for determining activation parameters of processes that are modulated by viscosity. The smooth change in kF is governed by the change in viscosity, not in other properties of the solvent, and it does not depend on the choice of the viscosigen. Donor/acceptor electronic coupling (HAB) and reorganizational energy (lambda), obtained by fitting of the temperature dependence of kF to the Marcus equation, are consistent with true electron transfer and with electron transfer that is coupled to, or gated by, a preceding structural rearrangement of the diprotein complex 3Zncyt/pc(II). The fact that at very high viscosity kF approaches zero shows that the reaction is probably gated throughout the investigated range of viscosity. Kinetic effects and noneffects of ionic strength, viscosity, and thermodynamic driving force indicate, but do not prove, that the reaction under consideration is gated. The kinetic effect of viscosity is analyzed in terms of two models. Because ln kF is a nonlinear function of ln eta, protein friction has to be considered in the analysis of viscosity effects on kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.