Abstract

A new two-temperature chemical kinetics model for nitrogen plasmas is presented. The model is used together with the vibrationally-specific collisional-radiative model to study the effects of vibrational nonequilibrium distributions on the chemical composition of two-temperature atmospheric pressure nitrogen plasmas. It is found that over a wide range of conditions the vibrational levels follow Boltzmann distributions and that the vibrational temperature Tv is well approximated by gas temperature Tg at low electron number densities and by electron temperature Te at high electron number densities. This result suggests that simple kinetic models with two-temperature rate coefficients can be used to reliably model nonthermal plasmas. The calculation also yields a surprising result that, for a given constant gas temperature, the steady-state electron number density exhibits an S-shaped dependence on the electron temperature. This S-shaped behavior is caused by competing ionization, charge transfer reactions, two-body dissociative recombination, and three-body electron recombination reactions, and therefore is characteristic of molecular plasmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call