Abstract

The aerodynamic shape of a closed-box girder plays an important role in the wind-induced stabilization of long-span suspension bridges. The purpose of this study is to investigate the effects of the combination of five aspect ratios and a downward vertical central stabilizer (DVCS) on nonlinear flutter and aerostatic behaviors of a super long-span suspension bridge with closed-box girders. Through conducting a series of wind-tunnel tests and nonlinear finite element analysis, the results show that the nonlinear self-excited forces and the critical wind speed (Ucr) gradually increase as the increase of the aspect ratio (i.e. the width to depth ratios). Furthermore, the application of 20% deck depth DVCS could significantly increase the nonlinear self-excited forces and Ucr for small aspect ratios of 7.9 and 7.1. Particularly, the installation of the DVCS could change the flutter divergence patterns of the bridge from soft flutter to hard flutter, especially for a relatively small aspect ratio. In addition, the aerostatic force coefficients and torsional divergence critical wind speeds of the larger aspect ratio with DVCS are significantly larger than that without DVCS. A relatively small aspect ratio of the bridge has better aerostatic performance than that with a larger aspect ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call