Abstract

This study aimed to systematically review the effects of the different velocity loss (VL) thresholds during resistance training (RT) on strength and athletic adaptations. The VL was analyzed as both a categorical and continuous variable. For the categorical analysis, individual VL thresholds were divided into Low-ModVL (≤ 25% VL) or Mod-HighVL (> 25% VL). The efficacy of these VL thresholds was examined using between-group (Low-ModVL vs. Mod-HighVL) and within-group (pre–post effects in each group) analyses. For the continuous analysis, the relationship (R2) between each individual VL threshold and its respective effect size (ES) in each outcome was examined. Ten studies (308 resistance-trained young men) were finally included. The Low-ModVL group trained using a significantly (p ≤ 0.001) lower VL (16.1 ± 6.2 vs. 39.8 ± 9.0%) and volume (212.0 ± 102.3 vs. 384.0 ± 95.0 repetitions) compared with Mod-HighVL. Between-group analyses yielded higher efficacy of Low-ModVL over Mod-HighVL to increase performance against low (ES = 0.31, p = 0.01) and moderate/high loads (ES = 0.21, p = 0.07). Within-group analyses revealed superior effects after training using Low-ModVL thresholds in all strength (Low-ModVL, ES = 0.79–2.39 vs. Mod-HighVL, ES = 0.59–1.91) and athletic (Low-ModVL, ES = 0.35–0.59 vs. Mod-HighVL, ES = 0.05–0.36) parameters. Relationship analyses showed that the adaptations produced decreased as the VL threshold increased, especially for the low loads (R2 = 0.73, p = 0.01), local endurance (R2 = 0.93, p = 0.04), and sprint ability (R2 = 0.61, p = 0.06). These findings prove that low–moderate levels of intra-set fatigue (≤25% VL) are more effective and efficient stimuli than moderate–high levels (> 25% VL) to promote strength and athletic adaptations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call