Abstract

Therapeutic angiogenesis relies on the delivery of angiogenic factors capable of reversing tissue ischemia. Polymeric materials that can provide spatial and temporal over vascular endothelial growth factor (VEGF) presentation provide clear benefit, but the influence of VEGF dose, temporal, and spatial presentation on the resultant angiogenic process are largely unknown. The influence of the temporal profile of VEGF concentration, dose, and the impact of VEGF spatial distribution on angiogenesis in in vitro models of angiogenesis and ischemic murine limbs was analyzed in this study. Importantly, a profile consisting of a high VEGF concentration initially, followed by a decreasing concentration over time was found to yield optimal angiogenic sprouting. A total VEGF dose 0.1 μg/g, when delivered with kinetics found to be optimal in vitro, provided a favorable therapeutic dose in murine hindlimb ischemia model, and distributing this VEGF dose in two spatial locations induces a higher level of vascularization and perfusion than a single location. These findings suggest that material systems capable of controlling and regulating the temporal and spatial presentation of VEGF maybe useful to achieve a robust and potent therapeutic angiogenic effect in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.