Abstract

Reduction in vegetation cover caused by human activities has a great impact on soil temperature. It is important to assess how soil temperature responds to reduction of vegetation height and density. In this paper we first report the trends of mean annual soil surface and air temperatures recorded at the meteorological stations near the Ecological Research Station for Grassland Farming (ERSGF) from 1961 to 2007, then we setup an experiment using reed (Phragmites australis) stalks with different heights and densities to simulate effects of different vegetation height and density on soil and air temperatures. The warming rates of the mean annual soil and air temperatures were 0.043 and 0.041°C a−1, respectively. Changes of soil temperature were characterized by both increased mean annual maximum and minimum soil temperatures. At the experimental site, mean daily temperature, mean daily maximum soil and air temperatures increased significantly. In contrast, mean daily minimum soil temperature increased significantly while mean daily minimum air temperature decreased significantly as the height and density of reed stalks reduced during the experimental period. Mean diurnal soil temperature ranges were smaller than mean diurnal air temperature ranges. These results highlight that the importance of vegetation cover on soil and air temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call