Abstract

Although the Korean tidal flats in the Yellow Sea have been highlighted as a typical macrotidal system, so far, there have been no measurements of the sediment erodibility and critical shear stress for erosion (τce). Using the Gust erosion microcosm system, a series of field experiments has been conducted in the Ganghwa tidal flat to investigate quantitatively the effects of biogenic materials on the erodibility of intertidal cohesive sediments. Four representative sediment cores with different surficial conditions were analyzed to estimate the τce and eroded mass. Results show that τce of the “free” sediment bed not covered by any biogenic material on the Ganghwa tidal flat was in the range of 0.1–0.2 Pa, whereas the sediment bed partially covered by vegetation (Phragmites communis) or fecal pellets had enhanced τce up to 0.45–0.6 Pa. The physical presence of vegetation or fecal pellets contributed to protection of the sediment bed by blocking the turbulent energy. An inverse relationship between the organic matter included in the eroded mass and the applied shear stress was observed. This suggests that the organic matter enriched in a near-bed fluff layer is highly erodible, and the organic matter within the underlying sediment layer becomes depleted and less erodible with depth. Our study underlines the role of biogenic material in stabilizing the benthic sediment bed in the intertidal zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call