Abstract
The ERCC1–XPF structure-specific endonuclease is necessary for correct processing of homologous recombination intermediates requiring the removal of end-blocking nonhomologies. We previously showed that targeting the endogenous CHO APRT locus with plasmids designed to generate such intermediates revealed defective recombination phenotypes in ERCC1 deficient cells, including suppression of targeted insertion and vector correction recombinants and the generation of a novel class of aberrant recombinants through a deletogenic mechanism. In the present study, we examined some of the mechanistic features of ERCC1–XPF in processing recombination intermediates by varying gene targeting parameters. These included altering the distance between the double-strand break (DSB) in the targeting vector and the inactivating mutation in the APRT target gene, and changing the position of the target gene mutation relative to the DSB to result in target mutations that were either upstream or downstream from the DSB. Increasing the distance from the DSB in the targeting vector to the chromosomal target gene mutation resulted in an ERCC1 dependent decrease in the efficiency of gene targeting from intermediates presenting lengthy end-blocking nonhomologies. This decrease was accompanied by a shift in the distribution of recombinant classes away from target gene conversions to targeted insertions in both wild-type and ERCC1 deficient cells, and a dramatic increase in the proportion of aberrant recombinants in ERCC1 deficient cells. Changing the position of the target gene mutation relative to the DSB in the plasmid also altered the distribution of targeted insertion subclasses recovered in wild-type cells, consistent with two-ended strand invasion followed by resolution into crossover-type products and vector integration. Our results confirm expectations from studies of Rad10–Rad1 in budding yeast that ERCC1–XPF activity affects conversion tract length, and provide evidence for the mechanism of generation of the novel, aberrant recombinant class first described in our previous study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.