Abstract

ABSTRACT The effects of three side stream phosphorous recovery volume on the performance and microbial structure of biological phosphorous removal system were investigated. Results showed that the removal of COD and nitrogen had no significant impacts by side stream operation, but the removal of phosphorous were gradually enhanced with the increase in side stream volume (SSV). The secretion of extracellular polymeric substance (EPS) were variously promoted at the stripping period. However, with the increase in SSV, the inhibition on EPS and phosphorus-accumulating organisms (PAOs) phosphorous absorption were severe and the restoration were tougher. The high throughout 16S rRNA gene sequencing revealed the succession of microbial population were significantly effected by side stream operation. The relative abundances of PAOs reduced to 0.17%, 0.09% and 0.07% with 30%, 60% and 90% side stream operations, respectively. At the restoration period, the relative abundance could restore to 95.4%, 65% and 38% initial values, respectively. The relative abundances of glycogen-accumulating organisms were variously enhanced under various SSV conditions. In conclusion, at SSV of 60%, more abundant recovered phosphorous could be obtained and had slighter and reversible effects on activated sludges. The SSV of 60% was the applicable SSV for phosphorous recovery from the biological phosphorus removal system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.