Abstract

Performance responses to steam flaking flint corn as well as to the addition of roughage to finishing diets composed of whole flint corn were evaluated. Ninety-six Nellore bulls were stratified by initial BW (373 ± 11 kg) and randomly allotted to 16 feedlot pens (6 bulls/pen) in a randomized complete block design with 4 replicates/treatment. Dietary treatments for the 86-d feeding trial consisted of (DM basis) 1) 78.8% steam-flaked flint corn with 6% sugarcane bagasse and 0.20% urea, 2) 85% whole flint corn without sugarcane bagasse, 3) 81.9% whole flint corn with 3% sugarcane bagasse and 0.10% urea, and 4) 78.8% whole flint corn with 6% sugarcane bagasse and 0.20% urea. All diets contained 15% (DM basis) of a pelleted protein, mineral, and vitamin supplement. Compared with whole flint corn grain, flaking of flint grain decreased ( < 0.01) DMI but did not alter ADG ( = 0.86), so G:F was increased ( = 0.02). Although steam flaking did not alter final BW and carcass characteristics ( > 0.47), it increased energy content of the diet ( < 0.03) and total tract starch digestibility ( < 0.01). In addition, flaking increased ( < 0.01) NEg of flint corn when compared with whole corn. Increasing the roughage content of WC-based diets resulted in quadratic ( < 0.02) responses in DMI, NEm and NEg intakes, ADG, and final BW but had no effect ( > 0.47) on G:F or on observed energy content of the diet. In summary, steam flaking of flint corn when fed in diets containing 6% sugarcane bagasse decreased DMI by 17% but increased G:F by 20% and NEg of corn calculated from feedlot performance by 23%; these responses markedly exceed those typically observed with dent corn grain. Moreover, adding 3% sugarcane bagasse to a flint whole corn grain diet optimized feedlot performance of Nellore bulls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.