Abstract

The unique properties of bulk metallic glass (BMG) render it an excellent material for bone-implant applications. BMG samples are difficult to produce directly because of the critical cooling rate of molding. Advancements in additive manufacturing technologies, such as selective laser melting (SLM), have enabled the development of BMG. The successful production of materials via SLM relies significantly on the processing parameters; meanwhile, the overall energy density affects the crystallization and, thus, the final properties. Therefore, to further determine the effects of the processing parameters, SLM is performed in this study to print Fe-based BMG with different properties three dimensionally using selected processing parameters but a constant energy density. The printed amorphous Fe-based BMG outperforms the typical 316 L stainless steel (316 L SS) in terms of mechanical properties and corrosion resistance. Moreover, observations from nanoindentation tests indicate that the hardness and elastic modulus of the Fe-based BMG can be customized explicitly by adjusting the SLM processing parameters. Indirect cytotoxicity results show that the Fe-based BMG can enhance the viability of SAOS2 cells, as compared with 316 L SS. These intriguing results show that Fe-based BMG should be investigated further for orthopedic implant applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.