Abstract
Cellulite is the accumulation of subcutaneous fat and connective tissue in tights and buttocks. Xanthines, such as aminophylline, are used as phosphodiesterase inhibitors, and are also adenosine receptor antagonists. The aim of the present study was to characterize in vitro aminophylline transdermal absorption through shed snake skin, and to investigate the absorption enhancing effect of various enhancers. Aminophylline gels were prepared using theophylline and ethylenediamine as raw materials of aminophylline, hydroxypropyl methyl cellulose (HPMC) F4M as gelling agent, and propylene glycol as a co-solvent. Sodium tauroglycocholate (STGC) (100, 200, and 500 μg/mL), lauric acid (1.7 and 15%), and ethanol (60%) were added as enhancers. In vitro percutaneous absorption experiments were performed on snake skin using Franz diffusion cells. Flux (J), permeability coefficient (P), and enhancement factor (EF) for each formulation were calculated. The results indicated that all of enhancers significantly enhanced drug permeability. This effect was decreased by increasing the concentration of STGC; in contrast, by increasing the concentration of lauric acid from 1.7 to 15%, EF was enhanced Although ethanol (60%) and STGC (100 μg/mL) showed the highest EFs, the effect of ethanol on drug permeability appeared with a lag time. According to the findings, type and concentration of penetration enhancers can effect on transdermal permeation of drug.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Jundishapur Journal of Natural Pharmaceutical Products
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.