Abstract
Physical and dielectric properties of LTCC (low temperature co-fired ceramics) materials based on a typical calcium aluminoborosilicate glass and various fillers such as Al2O3, BaTiO3, CaTiO3, TiO2, ZrO2, MgO and SiO2 were investigated. Densification, crystallization and thermal and dielectric properties were found to strongly depend on the type of filler. The XRD patterns of Al2O3, BaTiO3, CaTiO3 and MgO samples demonstrated crystalline phases, CaAl2Si2O8, BaAl2Si2O8, CaTiSiO5 and CaMgSi2O6, respectively, as a result of firing at 850 °C. For the sample containing CaTiO3 filler, specifically, dielectric constant increased drastically to approximately 19.9. A high quality factor of >210 and a high TCE (temperature coefficient of expansion) of >8.5 ppm/°C were obtained for the composition containing MgO or SiO2. Near zero TCF (temperature coefficient of frequency) was obtained for the samples containing TiO2. The purpose of this work is to investigate the effects of various ceramic fillers on physical and dielectric properties and ultimately to provide the technical guidelines for the proper choice of filler in various LTCC systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.