Abstract

This study investigates the mechanical and durability properties of fly ash-based engineered cementitious composites (ECC). The effect of various mineral additions, such as wheat husk ash (WHA), rice husk ash (RHA), glass powder (GP), and fibrillated polypropylene (PP) fibers, on mechanical performance, water absorption, and porosity was investigated. Furthermore, the durability of ECC specimens was assessed in terms of sorptivity, acid/sulfate attacks, electric resistivity (ER), rapid chloride penetration (RCPT), and ultrasonic pulse velocity (UPV). The results revealed higher mechanical strength, UPV, and ER values for RHA-based ECC. After 180 days of immersion in acid and sulfate solutions, RHA-based ECC showed a lower loss in compressive strength (23.21% and 1.07% in HCl and Na2SO4, respectively) relative to the control mix (44% and 7% in HCl and Na2SO4, respectively). Moreover, analytical characterizations such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning Electron Microscopy (SEM), and Energy dispersive X-ray (EDX) analyses were also carried out to corroborate the mechanical and durability properties of ECC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.