Abstract
Mechanical characteristics (i.e., stiffness, internal friction angle, peak strength) and crushability of a soft granular material were evaluated by performing a comprehensive series of laboratory tests using the following devices: standard and non-standard triaxial apparatus, direct and annular shear box, oedometer and hydrostatic devices. The initial tested specimens differ by initial void ratio, grading characteristics and particle hardness. The air-dried specimen of soft particles were then subjected to monotonic loadings for various stress paths (direct and annular shear stress paths, oedometer stress paths until different upper normal pressures, triaxial stress paths including different confining pressures). After each homogeneous test, sieving has been performed in order to characterize the evolution of grading characteristics of the granular packing. Experimental results on mechanical properties show that maximum internal friction angle is rather independent of the particle stiffness even though small differences may exist before peak stress-state. As highlighted by recent studies (Arslan in Granul Matter 11(2): 87–97, 2009), the volumetric response of the specimen indicates that classical critical state is no more a relevant framework when particle crushability is too high compared with the applied stress-state. Crushability related to loading paths has been evaluated through the relative breakage ratio (Br). The first results pointed out the effects of initial geometrical configuration (i.e., void ratio, grading) and particle stiffness. Analysis of the stress paths effects on the amount of breakage revealed that stress-state is not sufficient to describe properly breakage undergone by the material which is confirmed by an obvious link between volumetric strain and total breakage. Finally, the present study showed that the percentage of fine particles content during breakage may be seen as a function of the “level” of deviatoric loading paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.