Abstract

Pectic-polysaccharides are considered as one of the most abundant bioactive components in okra, which possess various promising health-promoting effects. However, the knowledge regarding the structure-bioactivity relationship of okra pectic-polysaccharides (OPP) is still limited. In this study, effects of various degrees of esterification (DEs) on in vitro antioxidant and immunostimulatory activities of OPP were analyzed. Results displayed that OPP with high (42.13%), middle (25.88%), and low (4.77%) DE values were successfully prepared by mild alkaline de-esterification, and their primary chemical structures (compositional monosaccharide and glycosidic linkage) and molecular characteristics (molecular weight distribution, particle size, and rheological property) were overall stable. Additionally, results showed that the notable decrease of DE value did not significantly affect antioxidant activities [2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO) radical scavenging abilities as well as ferric reducing antioxidant power (FRAP)] of OPP, suggesting that the DE was not closely related to its antioxidant activity. In fact, the slight decrease of antioxidant activity of OPP after the alkaline de-esterification might be attributed to the slight decrease of uronic acid content. Nevertheless, the immunostimulatory effect of OPP was closely related to its DE, and a suitable degree of acetylation was beneficial to its in vitro immunostimulatory effect. Besides, the complete de-acetylation resulted in a remarkable reduction of immune response. The findings are beneficial to better understanding the effect of DE value on antioxidant and immunomodulatory activities of OPP, which also provide theoretical foundations for developing OPP as functional foods or health products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.