Abstract

Little information about the selective stress of various antibiotics and how they influence different stages of aerobic nitrogen removal is available. A long-term aerobic nitrogen removal-moving bed biofilm reactor was established by the inoculation of Achromobacter sp. JL9, capable of heterotrophic nitrification and aerobic denitrification, and aerobic activated sludge. The nitrogen removal and antibiotic degradation performances of various antibiotics were then measured. High total nitrogen (91.83% and 91.51%) removal efficiencies were achieved with sulfamethoxazole or no antibiotics, and lower efficiencies were observed with other antibiotics (trimethoprim, teicoplanin, and ciprofloxacin). These results suggest that various antibiotics have different selective inhibitory effects on aerobic nitrogen removal. Additionally, all antibiotics were partly degraded; proposed degradation pathways according to the detected intermediates included ring-opening, S-N bond cleavage, amination, hydroxylation, and methylation. High-throughput sequencing indicated that aerobic denitrifying, recalcitrant pollutant degrading, and antibiotic-resistant bacteria dominate during the community evolution process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call