Abstract
The postprandial reduction in blood pressure (BP) is triggered by the interaction of nutrients with the small intestine and associated with an increase in splanchnic blood flow. Gastric distension may attenuate the postprandial fall in BP. The aim of this study was to determine the effects of differences in intragastric volume, including distension at a low (100 ml) volume, on BP and superior mesenteric artery (SMA) blood flow responses to intraduodenal glucose in healthy older subjects. BP and heart rate (HR; automated device), SMA blood flow (Doppler ultrasound), mesenteric vascular resistance (MVR), and plasma norepinephrine of nine male subjects (65-75 yr old) were measured after an overnight fast on 4 separate days in random order. On each day, subjects were intubated with a nasoduodenal catheter, incorporating a duodenal infusion port, and orally with a second catheter, incorporating a barostat bag, positioned in the fundus. Each subject received a 60-min (t = 0-60 min) intraduodenal glucose infusion (3 kcal/min) and gastric distension at a volume of 1) 0 ml (V0), 2) 100 ml (V100), 3) 300 ml (V300), or 4) 500 ml (V500). Systolic BP fell (P < 0.05) during V0, but not during V100, V300, or V500. In contrast, HR (P < 0.01) and SMA blood flow (P < 0.001) increased and MVR decreased (P < 0.05) comparably on all 4 days. Plasma norepinephrine rose (P < 0.01) in response to intraduodenal glucose, with no difference between the four treatments. There was a relationship between the areas under the curve for the change in systolic BP from baseline with intragastric volume (r = 0.60, P < 0.001). In conclusion, low-volume (≤100 ml) gastric distension has the capacity to abolish the fall in BP induced by intraduodenal glucose in healthy older subjects without affecting SMA blood flow or MVR. These observations support the concept that nonnutrient gastric distension prior to a meal has potential therapeutic applications in the management of postprandial hypotension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.