Abstract

This article presents results from investigation of the effects of variation in autoclave pressure, temperature, and vacuum-application time on porosity, hot/wet (H/W) and room temperature/dry (RT/D) short beam shear (SBS) strength, and failure mechanism of a commercial carbon fiber/epoxy prepreg, Cycom IM7/977-2 unidirectional tape. Fourteen cure cycles were designed to study a wide range of curing pressures, curing temperatures, and two different vacuum-application durations, including vacuum vented at recommended pressure and vacuum held throughout the cure cycle. The results showed that the SBS strength did not vary significantly over a relatively wide range of curing temperatures and pressures if vacuum was vented at recommended curing pressure; however, after a certain point, a decreasing trend in the SBS strength was observed by reducing the curing temperature and pressure. The C-scan images of panels cured with the vacuum held throughout the cure cycles revealed presence of a high-porosity cross-shaped defect at the center of the panels. The observed defect became larger as the curing pressure decreased. The correlation between the SBS strength and the void content was studied using theoretical models and experimental data. The investigation of the failure modes for each panel showed a change in both the H/W and the RT/D failure mechanism as a result of variation in curing temperature and pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.