Abstract

The steady incompressible mixed convection boundary layer flow with variable fluid properties and mass transfer inside a cone due to a point sink at the vertex of the cone have been investigated. The fluid viscosity and thermal conductivity have been assumed to be temperature dependent. The governing fluid flow equations with boundary conditions have been transformed into set of coupled ordinary differential equations with the help of similarity transformations and solved Runge-Kutta method with shooting technique. The effects of Schmidt number, variable thermal conductivity parameter, mixed convection parameter, buoyancy parameter and chemical reaction parameter on velocity distribution, temperature distribution, concentration distribution, heat transfer rate and coefficient of skinfriction have been investigated. It is observed that concentration decreases with increasing Schmidt number and temperature increases with increasing values of thermal conductivity parameter. Also with increasing values of mixed convection parameter, velocity, temperature and concentration decreases. The present study is relevant in conical nozzle and diffuser flow problems exist in petroleum and chemical industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.