Abstract

The spherical diffusion flame generated by either a porous burner or a fuel droplet in response to rotational motion was investigated through perturbation analysis, with emphasis on the effects variable density. While it was shown that main feature of the problem was adequately described by the constant-density model, the variable-density formulation revealed two new insights: (1) perturbations due to rotation decrease substantially as compared with the constant-density formulation, suggesting that the perturbing effects of rotation are substantially absorbed and thereby mitigated by the density variation, and (2) magnitude of the perturbations strongly depends on the ratio of the burner/droplet surface temperature to the ambient temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.