Abstract

The dynamics of an interfacial flow that is initially Rayleigh-Taylor unstable but becomes statically stable for some intermediate period due to the reversal of the externally imposed acceleration field is studied. We discuss scenarios that consider both single and double-acceleration reversals. The accel-decel (AD) case consists of a single reversal imposed at an instant after the constant acceleration instability has entered a self-similar regime. The layer of mixed fluid ceases to grow upon acceleration reversal, and the dominant mechanics are due to internal wave oscillations. Variation of mass flux and the Reynolds stress anisotropy is observed due to the action of the internal waves. A second reversal of the AD case that is termed as accel-decel-accel, ADA is then explored; the response of the mixing layer is shown to depend strongly on the duration and the periodicity of the Reynolds stress anisotropy of the mixing layer during the deceleration period. We explore the effect of this variable deceleration period after the second acceleration reversal where the flow once again becomes Rayleigh-Taylor unstable based on metrics that include the integral mixing-layer width, bubble and spike amplitudes, mass flux, Reynolds stress anisotropy tensor, and the molecular mixing parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call