Abstract

BackgroundPeriprosthetic joint infection (PJI) remains common and problematic. We hypothesized that using a bioceramic that provided rapid release of the antibiotics (vancomycin [VAN] or VAN and tobramycin [VAN and TOB]) from a polyvinyl-alcohol-composite (PVA) combined with a delayed and sustained antibiotic release from polymeric-dicalcium-phosphate-dihydrate (PDCPD) ceramic would inhibit S. aureus-associated implant infections. MethodsA total of 50 male Sprague Dawley rats were randomly divided into 5 groups—I: negative control; II: bacteria only; III: bacteria + saline wash; IV: bacteria + PVA-VAN-PDCPD, and V: bacteria + PVA-VAN-TOB-PDCPD. A porous titanium (Ti) implant was press-fit into the rat knee. S. aureus-containing broth was added into the joint space creating a PJI. After 1 week, the joints from groups III to V were washed with saline and the fluid collected for bacterial quantification. This was followed by saline irrigation treatment (groups III to V) and application of the antibiotic-loaded PVA-PDCPD bioceramic (groups IV and V). On day 21, joint fluid was collected, and the implants harvested for bacterial quantification. ResultsNo bacteria were isolated from the negative control (group I). The positive control (group II) was positive on both days 7 and 21. Bacteria were still present on day 21 in the fluid and implant in group III. Groups (IV and V) showed a decrease in the bacterial burden in the fluid and implant on day 21. There were significant differences in bacteria levels in the collected wash fluid and on the implant at day 21 between the saline wash (group III) and treatment groups (IV and V). ConclusionsIn this animal model of acute periprosthetic infection, treatment with PVA-VAN-PDCPD and PVA-VAN/TOB-PDCPD reduced bacterial load in the infected joint and the infected Ti implant. Application of PVA-VAN-PDCPD and/or PVA-VAN/TOB-PDCPD after saline irrigation could be used as an addition to the treatment of PJI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.