Abstract

In this paper, we investigate the effects of vanadium on the strength and ductility of medium-manganese steels by analyzing the microstructural evolution and strain hardening rates and performing quantitative calculations. Two significantly different contents of vanadium, 0.05 and 0.5 wt.%, were independently added to model steel (0.12C-10Mn) and annealed at different intercritical temperatures. The results show that higher vanadium addition increases the yield strength but decreases the ductility. The maximum yield strength can increase from 849 MPa to 1063 MPa at low temperatures. The model calculations reveal that this is due to a precipitation strengthening increment of up to 148 MPa and a dislocation strengthening increment of 50 MPa caused by a higher quantity of V4C3 precipitates. However, the high density of vanadium carbides leads them to easily segregate at grain boundaries or phase interfaces, which prevents strain from uniformly distributing throughout the phases. This results in stress concentrations which cause a high strain hardening rate in the early stages of loading and a delayed transformation-induced plasticity (TRIP) effect. Additionally, the precipitates decrease the austenite proportion and its carbon concentrations, rendering the TRIP effect unsustainable. Accordingly, the ductility of high vanadium steels is relatively low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.