Abstract

We report an investigation of the structural, magnetic and electronic properties of Ba(Fe1−xVx)2As2 using x-ray, transport, magnetic susceptibility and neutron scattering measurements. The vanadium substitutions in Fe sites are possible up to ∼40%. Hall effect measurements indicate strong hole-doping effect through V doping, while no superconductivity is observed in all samples down to 2 K. The antiferromagnetic and structural transition temperature of BaFe2As2 is gradually suppressed to finite temperature, then vanishes at with the emergence of spin glass behavior, suggesting an avoided quantum critical point (QCP). Our results demonstrate that the avoided QCP and spin glass state which were previously reported in the superconducting phase of Co/Ni-doped BaFe2As2 can also be realized in non-superconducting Ba(Fe1−xVx)2As2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.