Abstract

Short-chain fatty acids (SCFAs) are a group of microbial metabolites of undigested dietary fiber, protein and unabsorbed amino acids in the colon, well-known for their gut health promoting benefits. A relatively high intestinal level of valerate was found in the healthy human subjects. However, the intestinal protection effects and the underlying mechanism of valerate are waiting to be verified and elucidated. In the present study, valerate, a SCFAs mainly converted from proteins or amino acids, was demonstrated to promote intestinal barrier function at its physiological concentrations of 0-4 mM in the Caco-2 cell monolayer model of intestinal barrier using transepithelial electrical resistance (TEER) assay and paracellular permeability assay. Valerate achieved the maximum increase in the TEER at 2 mM and reduced the paracellular permeability. Its intestinal barrier function promoting activity is similar to that of butyrate, with a broader range of effective concentrations than the later. Through western blot analysis, this activity is linked to the valerate-induced AMPK activation and tight junctions (TJs) assembly, but not to the reinforced expression of TJs related proteins. It provides direct experimental evidence supporting valerate's function in intestinal health, implying the once under-valued function of valerate and its amino acid precursors. The valerate's role in regulating intestine homeostasis and its possible synergetic effects with other SCFAs warranted to be further investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call