Abstract

Vagus nerve stimulation (VNS) is being explored as a potential therapeutic for Parkinson’s disease (PD). VNS is less invasive than other surgical treatments and has beneficial effects on behavior and brain pathology. It has been suggested that VNS exerts these effects by increasing brain-derived neurotrophic factor (BDNF) to enhance pro-survival mechanisms of its receptor, tropomyosin receptor kinase-B (TrkB). We have previously shown that striatal BDNF is increased after VNS in a lesion model of PD. By chronically administering ANA-12, a TrkB-specific antagonist, we aimed to determine TrkB’s role in beneficial VNS effects for a PD model. In this study, we administered a noradrenergic neurotoxin, DSP-4, intraperitoneally and one week later administered a bilateral intrastriatal dopaminergic neurotoxin, 6−OHDA. At this time, the left vagus nerve was cuffed for stimulation. Eleven days later, rats received VNS twice per day for ten days, with daily locomotor assessment. Daily ANA-12 injections were given one hour prior to the afternoon stimulation and concurrent locomotor session. Following the final VNS session, rats were euthanized, and left striatum, bilateral substantia nigra and locus coeruleus were sectioned for immunohistochemical detection of neurons, α-synuclein, astrocytes, and microglia. While ANA-12 did not avert behavioral improvements of VNS, and only partially prevented VNS-induced attenuation of neuronal loss in the locus coeruleus, it did stop neuronal and anti-inflammatory effects of VNS in the nigrostriatal system, indicating a role for TrkB in mediating VNS efficacy. However, our data also suggest that BDNF-TrkB is not the sole mechanism of action for VNS in PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call