Abstract
This study compared the effects of bilateral subdiaphragmatic vagotomy on the Fos-like immunoreactivity (FLI), a marker of neuronal activation, in rat brain induced by two anorectic agents, cholecystokinin (CCK) and the serotonin agonist, dexfenfluramine (DFEN). In the nonvagotomized rats, both CCK (5 μg/kg, IP) and DFEN (2 mg/kg, IP) Induced FU in the nucleus of the solitary tract (MST), the external subdivision of the lateral parabrachial nuclei (LPBE), the lateral subdivision of the central amygdeloid nucleus (CeL), and the bed nucleus of the stria terminallis (BST). However, subregional distribution of the FLI induced by the two agents was different in most of these regions. Additionally, the area postrema and the medial subdivision of the hypothalamic paraventricular nucleus were preferentially activated by CCK but not DFEN, while the caudate-putemen was activated by DFEM but not CCK. Bilateral subdiaphragmatic vagotomy completely abolished CCK-induced FLI in all the brain regions but did not attenuate DFEN-Induced FLI in any of these regions, including the NST. The results of the present study suggest that DFEN-activation of the NST-LPBE-CeL/BST neuraxis is not mediated by the vague nerve. On the other hand, and consistent with a variety of other data, activation of various parts of the brain by peripherally administered CCK depends on a vagal pathway. These data are discussed in relation to a previously proposed interaction between CCK and serotonin in mediating satiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.