Abstract

Helicobacter pylori has to counteract acidity during colonization in the stomach. The most important region for the enzymic activity of H. pylori urease, consisting of 138 aa (ureB138), was determined by a comparison of the homology of amino acid sequences, and a structural analysis, between urease of H. pylori and various other species. This region was expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST), which was cleaved by PreScission protease between the GST moiety and ureB138. The ureB138 protein was then purified by gel filtration. The polyclonal antibody (pAb) induced by immunization with the purified ureB138 could suppress urease activity by about 50 %, while the pAb against the H. pylori urease did not show any inhibitory effect at all. Immunohistochemical analysis indicated that the ureB138-specific pAb specifically recognized the H. pylori infecting human gastric tissues. The effects of vaccination of recombinant ureB138 against infection by this organism were also examined. Specific IgG and IgA antibodies against H. pylori urease were induced in the serum of mice immunized with ureB138. A reduction in the number of colonizing H. pylori was observed in mice treated with ureB138 compared to ones treated with BSA and infection control mice. In the protected mice, severe gastritis characterized by marked infiltration of mononuclear cells was noted compared with the gastritis observed in unprotected mice. Immunohistochemical staining for IgA in gastric mucosa showed that the number of mice positively stained with IgA was significantly higher in ureB138-vaccinated mice than in non-vaccinated mice. This indicates that local IgA antibody and severe post-immunization gastritis correlate well with the protection of mice against H. pylori infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call