Abstract

2‐Hydroxypropyl‐3‐piperazinyl‐quinoline carboxylic acid methacrylate (HPQM) was used as a biocide in a silicone rubber compound. Antibacterial and mechanical performance of the compound was assessed before and after exposure to UV light for different times. Drop‐plate and halo tests were employed to evaluate qualitatively and quantitatively the antibacterial performance of the compound against Escherichia coli (E. coli, ATCC 25922) and Staphylococcus aureus (S. aureus, ATCC 25923). The results showed that the cure characteristics and the physical and mechanical properties of the HPQM‐containing rubber compound were strongly affected by the UV light. The tensile properties and hardness increased with UV aging. The lightness (L*) of the rubber compound without HPQM did not change with UV exposure, whereas that for the compound with HPQM decreased with UV exposure. The longer the contact time, the better the ability for killing the bacteria. After experiencing initial UV aging for 3 days, the rubber compound with HPQM showed an effective killing ability. However, after prolonged UV exposure, the antibacterial efficacy was reduced as a result of HPQM removal from the rubber surface during the condensation stage and a post‐curing reaction of the residual peroxide in the rubber compound. Under UV light, the silicone rubber compound with HPQM had a greater preference for killing the E. coli. J. VINYL ADDIT. TECHNOL., 20:49–56, 2014. © 2014 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call