Abstract

The unconsolidated sediment of intertidal mudflats constitutes a highly unstable environment, due to continuously changing water levels and currents as well as temporary exposure to the air. Therefore, diatoms inhabiting marine intertidal areas are subjected to strongly changing surface light and UV intensities due to exposure at low tide. Five marine intertidal diatoms (Achnanthes exigua, Cocconeis peltoides, Diploneis littoralis, Navicula digitoradiata and Amphora exigua) were isolated from the Solthörn tidal flat (Lower Saxony, southern North Sea). Semi-continuous cultures were used to determine the effect of UV radiation (photosynthetically active radiation only [PAR], PAR+UV-B, PAR+UV-A, PAR+UV-B+UV-A) during short- and long-term exposure (6 h or 30 days). Growth rates, chlorophyll a (chl a), antioxidant capacities, accumulation of phenolic compounds (e.g. flavonoids) and DMSP, and activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase and glutathione reductase) were assessed. UV-A had only minor effects on cells, while growth rate, chl a content and protein content were significantly reduced after long-term UV-B exposure. Achnanthes exigua extracts showed the highest antioxidant capacity. The highest activity of SOD, APX and MDHAR was found under long-term combined UV exposure (PAR+UV-B+UV-A). Overall, the antioxidative defence of the five isolates was stimulated during exposure to UV radiation, as may be found during emersion. Emersion induces oxidative stress and, as a result, growth of the five diatom taxa was inhibited to suit changing environmental conditions. All five taxa tested in the present study showed species-specific acclimatization potentials, providing possible explanations for variability in population, species composition and ecosystem structures in the face of climatic variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call