Abstract
The property changes of polymeric films upon degradation are important to develop strategies to prolong the device lifetimes. In this regard, we investigated the effects of ultraviolet-ozone (UVO) treatment on the electronic structures of poly (9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) films. We found that as the UVO treatment time increased, the intensities of the UV–vis and photoluminescence spectra of both F8BT and PFO films exponentially decayed owing to the destruction of the conjugated system of the films. As per the X-ray photoelectron spectra, both the F8BT and PFO films showed significant oxidation and p-doping effects upon UVO treatment. In addition, UVO treatment caused the etching of the polymeric films, and their thickness gradually decreased; the etching rate with UVO treatment was faster for PFO than for F8BT. These results indicate that the functionalization of polymers with UVO treatment requires the careful consideration of the resulting changes in their electronic structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.