Abstract

Exposing engineering plastics to UV irradiation can easily destroy the original molecular structure of the materials and consequently affect their tribological properties. This study investigated the effects of UV irradiation on the molecular structure of typical engineering plastics, such as polytetrafluoroethylene (PTFE) and polyether ether ketone (PEEK), and on their tribological properties under heavy loads (20 MPa). The surface morphology results showed that the appearance of PEEK changed significantly under UV irradiation. However, the change in PTFE was negligible. Under micromorphology, the processing lines of the two materials gradually became lighter with increasing UV irradiation time. The resulting infrared spectra showed that the molecular chains of both materials were broken, and new functional groups were formed under UV irradiation. Tribology testing demonstrated that with prolonged UV irradiation, the average PTFE coefficient of friction remained relatively stable, whereas that of PEEK was approximately 0.55. As the UV irradiation time increased, the wear rate of PTFE increased significantly, whereas that of PEEK showed no significant change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call