Abstract

In this study, the degraded purified fraction from Sargassum fusiforme polysaccharides (SFP), named DSFP, was produced by the treatment of ultraviolet/hydrogen peroxide (UV/H2O2) degradation and step gradient ethanol precipitation. Results showed that the treatment significantly reduced the molecular weight of polysaccharides, from 282.83 kDa to 18.54 kDa, and influenced their surface morphology and roughness. SFP and DSFP were typical sulfated polysaccharides, mainly composed of fucose, galacturonic acid, glucuronic acid, galactose, and mannose. Both SFP and DSFP increased cell migration during intestinal epithelial wound healing and stimulated the cell cycle progression by promoting the transition from G0/G1 to S phase in the rat intestine epithelium cells (IEC-6). But DSFP had a stronger positive effect on wound healing and cell migration than SFP. It reinforced the intestinal barrier function and attenuated lipopolysaccharides-induced intestinal inflammation. DSFP significantly downregulated the expression of Toll-like receptor 4, tumor necrosis factor-α, interleukin-6, interleukin-1β, and inducible nitric oxide synthase by 53.14%, 92.41%, 66.01%, 68.24%, and 78.09%, respectively, and upregulated that of interleukin-10 by 2.48 folds when compared to the model. Therefore, the treatment (UV/H2O2 degradation and step gradient ethanol precipitation) could effectively improve the protective effects against intestinal epithelial injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.